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We study optical Fresnel transforms by finding the appropriate quantum mechanical
SU(1,1) squeezing operators which are composed of quadratic combination of canonical
operators. In one-mode case, the squeezing operator’s matrix element in the coordinate
basis is just the kernel of one-dimensional generalized Fresnel transform (GFT); while
in two-mode case, the matrix element of the squeezing operator in the entangled state
basis leads to the two-dimensional GFT kernel. The work links optical transforms in
wave optics to generalized squeezing transforms in quantum optics.
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1. INTRODUCTION

In wave optics theory, the Fresnel integral is frequently used to describe
beam propagation in paraxial approximation and Fresnel diffraction of light. The
generalized Fresnel transform (GFT) for an arbitrary function f (x1) is defined as
(Alieva and Agullo–Lopez, 1995; James and Agarwal, 1996)[

RMf (x1)
]

(x2) =
∫ ∞

−∞
KM (x2, x1) f (x1) dx1 (1)

with the transform kernel

KM (x2, x1) = 1√
2πiB

exp

[
i

2B

(
Ax2

1 − 2x2x1 + Dx2
2

)]
, (2)

which is parameterized by a real matrix M = [A,B; C,D] whose determinant
AD − BC = 1. Since GFT is related to a wide class of optical transforms:
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Fourier transform, optical Wigner transform, wavelet transform and fractional
Fourier transform (Namias, 1980; Mendlovic and Ozakatas, 1993), etc, its various
properties and applications have brought great interests of physicists recently.

In this work, we shall study optical Fresnel transform by finding two appro-
priate quantum mechanical SU(1,1) squeezing operators, which are composed of
quadratic combination of canonical operators in both one-mode and two-mode
cases, respectively. The reason why we choose the quadratic combination of
canonical operators lies in two aspects: (1) the corresponding optical processes
for GFT can be analyzed more clearly and physically; (2) Generalized Fresnel
Transform in wave optics can also be studied in terms of quantum optics operator
transform method. The two kinds of squeezing operators we find in this paper
have remarkable property: for one-mode SU(1,1) squeezing operator, its matrix
elements in the coordinate representation is just the kernel of one-dimensional
GFT; while for two-mode SU(1,1) squeezing operator, its matrix element in the
entangled state basis leads to the two-dimensional GFT kernel (the entangled state
of continuum variables has beeen constructed based on the quantum entanglement
of Einstein-Podolsky-Rosen). The quadratic combination of canonical operators
in two-mode case can be analyzed very conveniently in the entangled state rep-
resentation. Important properties of GFT can be directly obtained via SU(1,1)
squeezing operator approach. Thus a “bridge” linking optical transforms in wave
optics to representation transform in quantum optics is established.

The work is arranged as follows. In Section 2, we introduce one-mode SU(1,1)
squeezing operator composed by quadratic combination of canonical operators.
Section 3 is devoted to showing the advantages of SU(1,1) squeezing operator. In
Section 4, we will propose SU(1,1) squeezing operator in two-mode case. As an
application of introducing SU(1,1) squeezing operator, we show in Section 5 that
the parameter matrix corresponding to the scaling transform of two-dimensional
GFT can be identified, and then the scaling law of GFT is derived in terms of
two-mode SU(1,1) squeezing operator and the entangled state.

2. ONE-MODE SU(1,1) SQUEEZING OPERATOR BY QUADRATIC
COMBINATION OF CANONICAL OPERATORS

We now search for one-mode SU(1,1) squeezing operator, the operator coun-
terpart of one-dimensional GFT. SU(1,1) squeezing operator is related to GFT in
such a way that by taking the matrix element of SU(1,1) squeezing operator in
coordinate representation will yield the transform kernel of GFT. Enlightened by
the optical Wigner transform theory, and its quantum mechanical correspondence
(Fan, 2003), we know that the thin lens transform operator is exp

(
iµX2/2

)
, the

Fresnel diffraction transform operator is exp
(−iνP 2/2

)
, and the optical scaling

transform corresponding to the operator exp
(− i

2 (XP + PX) ln λ
)
, all the opera-
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tors X2, P 2 and (XP + PX) are named quadratic canonical operators, because the
commutative relation [X,P ] = i is canonical. These operators may constitute a
SU(1,1) squeezing operator, and after some tries we finally find that the one-mode
SU(1,1) squeezing operator reads

F1 (A,B,C) = exp

(
iC

2A
X2

)
exp

(
− i

2
(XP + PX) ln A

)
exp

(
− iB

2A
P 2

)
,

AD − BC = 1. (3)

To confirm this, we calculate matrix element of F1 sandwiching between the
coordinate basis 〈x| and the momentum basis |p〉 ,

〈x| F1 |p〉 = exp

(
iC

2A
x2

)
〈x| exp

(
− i

2
(XP + PX) ln A

)
|p〉 exp

(
− iB

2A
p2

)

= 1√
2πA

exp

(
iC

2A
x2 − iB

2A
p2 + ipx

A

)
, (4)

where we have used the squeezing property

exp

(
− i

2
(XP + PX) ln A

)
|p〉 = 1√

A
|p/A〉 . (5)

Using the completeness relation of |p〉, and AD − BC = 1, we see

〈x2| F1 |x1〉 =
∫ ∞

−∞
dp 〈x2| F1 |p〉 〈p| x1〉

= exp

(
iC

2A
x2

2

)
1

2π
√

A

∫ ∞

−∞
dp exp

[
− iB

2A
p2 + ipx2

A
− ipx1

]

= 1√
2πiB

exp

[
i

2B

(
Ax2

1 − 2x2x1 + Dx2
2

)] ≡ KM (x2, x1) , (6)

Thus F1 (A,B,C) is really the expected SU(1,1) squeezing operator. It is easily
seen

F−1
1

(
X

P

)
F1 =

(
A B

C D

) (
X

P

)
. (7)

3. ADVANTAGES OF INTRODUCING SU(1,1) SQUEEZING OPERATOR

Now the multiplication rule of GFT can be seen directly by virtue of SU(1,1)
squeezing operator algebra. Using (7) we have

F ′−1
1

(
A′, B ′, C ′)F−1

1 (A,B,C)

(
X

P

)
F1 (A,B,C) F ′

1

(
A′, B ′, C ′)
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=
(

A′′ B ′′

C ′′ D′′

) (
X

P

)
, (8)

which implies

F ′′
1

(
A′′, B ′′, C ′′) = F1 (A,B,C) F ′

1

(
A′, B ′, C ′) ,(

A′′ B ′′

C ′′ D′′

)
=

(
A′ B ′

C ′ D′

) (
A B

C D

)
. (9)

Besides, it follows from (6) and (9) that

〈x3| F1
(
A′′, B ′′, C ′′) |x1〉 = 〈x3| F ′

1

(
A′, B ′, C ′) ∞∫

−∞
dx2 |x2〉 〈x2| F1 (A,B,C) |x1〉 ,

(10)
which indicates the group multiplication rule of GFT∫ ∞

−∞
dx2KM ′

(x3, x2)KM (x2, x1) = KM ′′
(x3, x1) . (11)

By observing the three separate exponentials of SU(1,1) squeezing operator in (3)
we realize that it just one-to-one corresponds to the decomposition,(

1 0
C/A 1

) (
A 0
0 1/A

) (
1 B/A

0 1

)
=

(
A B

C D

)
, (12)

which shows that an arbitrary GFT can always be implemented by such an optical
setup: let the light first go through a Fresnel diffraction, then followed by a
scaling transform, and finally a thin lens transform. To this end, one can see that
the reason of using the quadratic combination of canonical operators to express
SU(1,1) squeezing operator is: the corresponding optical processes for GFT can
be analyzed more clearly and physically.

Another advantage of introducing SU(1,1) squeezing operator lies in that
now we can analyze how optical field state in quantum optics theory will be
transformed under the Fresnel transformation, for example, the vacuum state
undergoes the transform

F1 (A,B,C) |0〉

=
∫ ∫ ∞

−∞
dx1dx2 |x2〉 〈x2| F1 (A,B,C) |x1〉 〈x1| 0〉

= 1

π1/2

∫ ∫ ∞

−∞
dx1dx2KM

1 (x2, x1) exp

[
−x2

1

2
− x2

2

2
+

√
2a†x2 − a

†2
2

2

]
|0〉

=
√

2

A + D + i (B − C)
exp

[
A − D + i (B + C)

2 [A + D + i (B − C)]
a†2

]
|0〉 , (13)
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which is a generalized squeezed state. In Mandel and Wolf’s quantum optics
book (1995), it is discussed that when a light beam enters into one port of an
optical beamsplitter, the quantum effect of a vacuum state on the another part of
the beamsplitter must be taken into account, so we think that the vacuum state
might have effect on other optical instruments during Fresnel transformation in
the context of quantum optics.

4. SU(1,1) SQUEEZING OPERATOR IN TWO-MODE CASE
AND ENTANGLED STATE REPRESENTATION

Now we extend the one-mode SU(1,1) squeezing operator to a two-
mode case. Note that the quadratic combinations 1

4

(
(X1 − X2)2 + (P1 + P2)2

)
,

1
4

(
(X1 + X2)2 + (P1 − P2)2

)
and i (X1P2 + X2P1) of the four canonical operators

(X1, X2; P1, P2) obey the commutative relations[
1

4

(
(X1 − X2)2 + (P1 + P2)2) ,

1

4

(
(X1 + X2)2 + (P1 − P2)2)]

= − i

2
(X1P2 + X2P1) (14)

and [
− i

2
(X1P2 + X2P1) ,

1

4

(
(X1 − X2)2 + (P1 + P2)2)]

= 1

4

[
(X1 − X2)2 + (P1 + P2)2

]
,[

− i

2
(X1P2 + X2P1) ,

1

4

(
(X1 + X2)2 + (P1 − P2)2

)]

= −1

4

[
(X1 + X2)2 + (P1 − P2)2

]
, (15)

which shows a SU(1,1) Lie algebra structure, this structure is also complied
by X2/2, P 2/2 and −i (XP + PX) /2 that have been used in composing
F1 (A,B,C), thus we introduce two-mode SU(1,1) squeezing operator by

F2 (A,B,C) = exp

(
iC

2A

[
(X1 − X2)2 + (P1 + P2)2

])
exp (i (X1P2 + X2P1) ln A)

× exp

(
− iB

2A

[
(X1 + X2)2 + (P1 − P2)2

])
. (16)

To see how it is related to two-mode GFT, we introduce two mutually conjugate
entangled states |η〉 and |ζ 〉 (Fan and Klauder, 1994; Fan and Xiong, 1995; Fan and
Lu, 2003; Fan, 2003, 2004; Fan et al., 2003, 2004; Fan and Fu, in press; Hong-Yi
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Fan and Jiang, 2004)

|η〉 = exp

[
−|η|2

2
+ ηa

†
1 − η∗a†

2 + a
†
1a

†
2

]
|00〉 , η = η1 + iη2,

|ζ 〉 = exp

[
−|ζ |2

2
+ ζa

†
1 + ζ ∗a†

2 − a
†
1a

†
2

]
|00〉 , ζ = ζ1 + iζ2, (17)

where ai, a
†
i are Bose annihilation and creation operators, respectively, |00〉 is the

two-mode vacuum state. Both |η〉 and |ζ 〉 possess the orthogonal and completeness
relation

∫
d2η

π
|η〉 〈η| = 1, d2η = dη1dη2,

〈
η′∣∣ η〉 = πδ(2) (η′ − η

)
,

∫
d2ξ

π
|ζ 〉 〈ζ | = 1, d2ξ = dζ1dζ2,

〈
ζ ′∣∣ ζ 〉 = πδ(2) (ζ ′ − ζ

)
. (18)

They obey the eigenvalue equations

(X1 − X2) |η〉 =
√

2η1 |η〉 , (P1 + P2) |η〉 =
√

2η2 |η〉 ,

(X1 + X2) |ζ 〉 =
√

2ζ1 |ζ 〉 , (P1 − P2) |ζ 〉 =
√

2ζ2 |ζ 〉 . (19)

Thus for a bipartite system, |η〉 is the common eigenvector of two particles’
relative coordinate and their total momentum with the eigenvalues being the real
and imaginary parts of the complex variable η, respectively. It is Einstein et al.
(1935) who firstly used [(X1 − X2) , (P1 + P2)] = 0 to challenge the incomplete-
ness of quantum mechanics and consequently show quantum entanglement. The
overlap of 〈ζ | η〉 is

〈ζ | η〉 = 1

2
exp

(
ζ ∗η − η∗ζ

2

)
. (20)

Calculating the matrix element of F2 sandwiching between 〈η| and |ζ 〉, using (19)
and (Fan, 2003)

exp [iλ (X1P2 + X2P1)] =
∫

d2ζ

µπ
|ζ/µ〉 〈ζ |

= µ

∫
d2η

π
|µη〉 〈η| ≡ U2 (λ) , µ = eλ, (21)
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we have

〈η| F2 (A,B,C) |ζ 〉

= exp

(
iC

2A
|η|2 − iB

2A
|ζ |2

)
〈η|

∫
d2ζ ′

Aπ

∣∣ζ ′/A
〉 〈

ζ ′∣∣ ζ 〉

= 1

A
exp

(
iC

2A
|η|2 − iB

2A
|ζ |2

)
〈η| ζ/A〉

= 1

2A
exp

(
iC

2A
|η|2 − iB

2A
|ζ |2

)
exp

[
1

2A

(
η∗ζ − ηζ ∗)] (22)

It then follows from (18) and (20) that〈
η′∣∣F2 (A,B,C) |η〉 = ∫ ∞

∞
d2ζ

π

〈
η′∣∣F2 |ζ 〉 〈ζ | η〉

= 1
4A

exp
(

iC
2A

∣∣η′∣∣2
) ∫

d2ζ

π
exp

[− iB
2A

|ζ |2 + 1
2A

(
η′∗ζ − η′ζ ∗) + 1

2 (ζ ∗η − ζη∗)
]

= 1
2iB

exp
[

i
2B

(
A |η|2 − i

(
ηη′∗ + η∗η′) + D

∣∣η′∣∣2
)]

= T M
(
η′, η

)
,

(23)
which is just the transform kernel of a two-dimensional GFT. Letting a state vector
|f 〉 undergoes a SU(1,1) squeezing operator transform, F2 (A,B,C) |f 〉 = |g〉,
then the corresponding two-dimensional GFT in complex η space can be written
as

g
(
η′) ≡ 〈

η′∣∣ g〉 = 〈
η′∣∣ F2 (A,B,C) |f 〉

=
∫ ∞

∞

d2η

π

〈
η′∣∣F2 (A,B,C) |η〉 〈η| f 〉

=
∫ ∞

∞
d2ηT M

(
η′, η

)
f (η) ≡ [

FMf (η)
] (

η′) , (24)

where the subscript 2 means two-dimensional. The corresponding multiplication
rule is

T M ′′ (
η′′, η

) =
∫ ∞

−∞
d2η′T M ′ (

η′′, η′) T M
(
η′, η

)
. (25)

5. THE SCALING LAW OF TWO-DIMENSIONAL GFT GAINED VIA |η〉
AND SU(1,1) SQUEEZING OPERATOR

A practical optical transform is often dependent on the scale of the original
function, so a scaling rule (or similarity theorems) of GFT is useful. Alieva et al.,
(1996) presented a scaling rule of GFT by integral transform for (1) and (2). Here
we show how to directly employ the property of SU(1,1) squeezing operator to
derive the scaling rule of GFT in η space. Let f (η) = 〈η |f 〉 be the input light
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field from an object (state). By considering the scaling of the object itself as an
extra GFT T S (the first GFT),[

T Sf (η)
] (

η′) = µf
(
µη′) , (26)

where the scaling parameter matrix S is

S=
(

1/µ 0
0 µ

)
. (27)

Then taking the light propagation emitted from the scaled object as the second
GFT, which is parameterized by M (z1) = [A (z1) , B (z1) ; C (z1) ,D (z1)] (here
z1 is located at the transversal plane of the image), according to the multiplication
rule of GFT (25), the total effect can be equal to a GFT of the unscaled object with
the parameter matrix M ′,(

A (z1) B (z1)
C (z1) D (z1)

)(
1/µ 0

0 µ

)
=

(
A (z1) /µ µB (z1)
C (z1) /µ µD (z1)

)
≡ M ′. (28)

Substituting M ′ into (23) we immediately know the resultant GFT is[
T Mf (µη)

]
(η′) = 1

µ

[
T M (T Sf (η))

] (
η′) = 1

µ

[
T M ′

f (η)
] (

η′)
= 1

2πiµB(z1)

∫ ∞
−∞ d2η exp

[
i

2µ2B(z1)

(
A |η|2 − iµ

(
ηη′∗ + η∗η′) + µ2D

∣∣η′∣∣2
)]

f (η) ,

(29)
note that in (29) the object is still f (η), which is similar to (4) in (Alieva and
Agullo-Lopez, 1996). The scaling law then can be stated as: the above GFT M ′

can be equivalent to another GFT M ′′ (z2) ≡ [A (z2) , B (z2) ; C (z2) ,D (z2)] (i.e.,
results in an image in a different transversal plane z2) applied to the original
(unscaled) object with its output field being a scaled image of order ν at z2, which
we shall regard as another GFT with transforming parameter S ′ = [1/ν, 0; 0, ν].
Then using the group multiplication rule we should identify(

A (z1) /µ µB (z1)
C (z1) /µ µD (z1)

)
=

(
1/ν 0

0 ν

) (
A (z2) B (z2)
C (z2) D (z2)

)

=
(

A (z2) /ν B (z2) /ν

νC (z2) νD (z2)

)
, (30)

from which, we get

ν = B (z2)

B (z1) µ
, (31)

and

B (z1)

B (z2)
= A (z1)

µ2A (z2)
, (32)
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which agree with (Alieva and Agullo-Lopez, 1996). With (31) and (32) being
satisfied, (30) can be rewritten as[

T M(z1)f (µη)
] (

η′) = 1

µ

[
T M(z1)(T Sf (η))

] (
η′)

= 1

µ

[
T M ′

f (η)
] (

η′) = ν

µ

[
T M(z2)f (η)

] (
νη′)

= B (z2)

µB (z1)

[
T M(z2)f (η)

] (
νη′) . (33)

It should be noticed that with condition (32), the extra phase factor in (6) of Alieva
and Agullo-Lopez (1996) automatically vanishes.

In sum, we have found the appropriate quantum mechanical SU(1,1) squeez-
ing operator which is composed of quadratic combination of canonical operators
for both one-mode and two-mode cases. In two-mode case we have combined
the two-mode SU(1,1) squeezing operator and the entangled state basis to yield
the two-dimensional GFT kernel in η space and the scaling rule. The advantages
of SU(1,1) squeezing operator is exhibited and why using the quadratic combi-
nation of canonical operators is explained. The usefulness of entangled states is
demonstrated again in the link between quantum optics and Fourier optics.
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